Discriminative cue integration for medical image annotation

نویسندگان

  • Tatiana Tommasi
  • Francesco Orabona
  • Barbara Caputo
چکیده

Automatic annotation of medical images is an increasingly important tool for physicians in their daily activity. Hospitals produce nowadays an increasing amount of data. Manual annotation is very costly and prone to human mistakes. This paper proposes a multi-cue approach to automatic medical image annotation. We represent images using global and local features. These cues are then combined together using three alternative approaches, a high-level, a mid-level and a low-level fusion scheme, all based on the Support Vector Machines (SVM) algorithm. We tested our methods on the IRMA database, and with the midand high-level integration scheme we did participate to the 2007 ImageCLEFmed benchmark evaluation, in the medical image annotation track. These algorithms ranked first and fifth respectively among all submission. Experiments using the low-level integration scheme also confirm the power of cue integration for this task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLEF2007: Image Annotation Task: an SVM-based Cue Integration Approach

This paper presents the algorithms and results of our participation to the medical image annotation task of ImageCLEFmed 2007. We proposed, as a general strategy, a multi-cue approach where images are represented both by global and local descriptors, so to capture different types of information. These cues are combined during the classification step following two alternative SVM-based strategie...

متن کامل

Cue Integration for Medical Image Annotation

This paper presents the algorithms and results of our participation to the image annotation task of ImageCLEFmed 2007. We proposed a multi-cue approach where images are represented both by global and local descriptors. These cues are combined following two SVMbased strategies. The first algorithm, called Discriminative Accumulation Scheme (DAS), trains an SVM for each feature, and considers as ...

متن کامل

Deformations, patches, and discriminative models for automatic annotation of medical radiographs

In this paper, we describe three different methods for the classification and annotation of medical radiographs. The methods were applied in the medical image annotation tasks of ImageCLEF in 2005, 2006, and 2007. Image annotation can be used to access and find images in a database using textual queries when no textual image description is available. One of the methods is a non-linear model tak...

متن کامل

Automatic medical image annotation in ImageCLEF 2007: Overview, results, and discussion

In this paper, the automatic medical annotation task of the 2007 CLEF cross language image retrieval campaign (ImageCLEF) is described. The paper focusses on the images used, the task setup, and the results obtained in the evaluation campaign. Since 2005, the medical automatic image annotation task exists in ImageCLEF with increasing complexity to evaluate the performance of state-of-the-art me...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008